Space Media Network Trade News Advertising
February 25, 2024

Rocket Lab's constellation at

AI maps icebergs 10,000 times faster than humans


Propel Business Growth
With AI-enhanced CRM
Make informed decisions

AI maps icebergs 10,000 times faster than humans

by Staff Writers
Paris (ESA) Nov 10, 2023
In a groundbreaking development, researchers from the University of Leeds have unveiled a neural network that can swiftly and accurately chart the expanse of large Antarctic icebergs in satellite images, accomplishing the task in a mere 0.01 seconds. This novel approach is in stark contrast to the laborious and time-consuming manual efforts needed previously.

Anne Braakmann-Folgmann, lead author of the findings published today in The Cryosphere, conducted her research during her tenure as a PhD student at the University of Leeds in the UK. Now working at the Arctic University of Norway in Tromso, she emphasised the significance of large icebergs in the Antarctic environment.

"Giant icebergs are important components of the Antarctic environment. They impact ocean physics, chemistry, biology and, of course, maritime operations. Therefore, it is crucial to locate icebergs and monitor their extent, to quantify how much meltwater they release into the ocean."

Providing images of icebergs regardless of cloud cover and lack of daylight, the Copernicus Sentinel-1 radar mission plays a pivotal role in the innovative approach of using Artificial Intelligence to map bergs.

In images from satellites carrying camera-like instruments, icebergs, sea ice and clouds all appear white, making it hard to pick out actual icebergs.

Whereas in most radar images, as returned by Sentinel-1, icebergs appear as bright objects against the darker ocean and sea-ice background.

Nevertheless, when the surroundings are complex, it can still sometimes be difficult to differentiate icebergs from sea ice or even the from the coastline.

Dr Braakmann-Folgmann, explained, "We have sometimes struggled to separate icebergs from surrounding sea ice that is rougher and older, and therefore looks brighter in the satellite images. The same applies to wind-roughened ocean.

"Also, smaller iceberg fragments, which occur frequently near icebergs as they constantly lose bits of ice around their edges, are easily grouped together with the main iceberg by mistake.

"In addition, the Antarctic coastline may resemble icebergs in the satellite images, so standard segmentation algorithms often select the coast too instead of just the actual iceberg."

The new neural network approach, however, excels in mapping iceberg extent even in these challenging conditions. Its power lies in the neural networks' ability to understand intricate non-linear relationships and take the whole image context into account.

To effectively track changes in iceberg area and thickness, essential for understanding how icebergs dissolve and release freshwater and nutrients into the ocean, pinpointing a specific giant iceberg for continuous monitoring is crucial.

The neural network introduced in this study is highly proficient in identifying the largest iceberg in each image, unlike comparative methods, which frequently select slightly smaller icebergs in proximity.

The architecture of the neural network is based on the renowned U-net design. It was meticulously trained using Sentinel-1 images exhibiting giant icebergs in various settings, with manually-derived outlines serving as the target.

Throughout the training process, the system continually refines its predictions, adjusting its parameters based on the difference between the manually derived outline and the predicted result. Training ceases automatically when the system reaches its optimum performance, ensuring its adaptability and success on new examples.

The algorithm has been tested on seven icebergs, ranging in size from 54 sq km to 1052 sq km, roughly equivalent to the areas of the city of Bern in Switzerland and Hong Kong, respectively.

A diverse dataset was compiled, incorporating between 15 and 46 images for each iceberg, spanning various seasons and the years 2014 - 2020.

A single Sentinel-1 image per month per iceberg was used to ensure dataset variety. Presenting an accuracy of 99%, the results have been impressive.

Dr Braakmann-Folgmann added, "Being able to map iceberg extent automatically with enhanced speed and accuracy will enable us to observe changes in iceberg area for several giant icebergs more easily and paves the way for an operational application."

ESA's Mark Drinkwater noted, "Satellites are, of course, essential for monitoring changes and understanding processes occurring far from civilisation. This new neural network automates what would otherwise be a manual and labour-intensive task of locating and reporting iceberg extent.

"We congratulate the team on the introduction of this innovative machine learning approach, to achieve a robust and accurate approach to monitoring changes in the vulnerable Antarctic region."

Video: Using AI to measure the size of icebergs

Research Report:Mapping the extent of giant Antarctic icebergs with deep learning

Artificial Intelligence Analysis

This AI report is generated by a sophisticated prompt to a ChatGPT API. Our editors clean text for presentation, but preserve AI thought for our collective observation. Please comment and ask questions about AI use by Spacedaily. We appreciate your support and contribution to better trade news.

The Power of Breeze
Learn about the sweeping changes in wind power!
AI-powered updates, no windmill tilting required!

Next Story

Buy Advertising About Us Editorial & Other Enquiries Privacy statement

The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement